Рефераты. Реферат: Поверхности второго порядка
Реферат: Поверхности второго порядка

Реферат: Поверхности второго порядка

Реферат: Поверхности второго порядка

Поверхности второго порядка

Поверхности второго порядка – это поверхности, которые в прямоугольной системе координат определяются алгебраическими уравнениями второй степени.

  1. Эллипсоид.


Эллипсоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением:

(1)

Уравнение (1) называется каноническим уравнением эллипсоида.

Установим геометрический вид эллипсоида. Для этого рассмотрим сечения данного эллипсоида плоскостями, параллельными плоскости Oxy. Каждая из таких плоскостей определяется уравнением вида z=h, где h – любое число, а линия, которая получается в сечении, определяется двумя уравнениями


(2)

Исследуем уравнения (2) при различных значениях h.

  1. Если
    > c (c>0), то
    и уравнения (2) определяют мнимый эллипс, т. е. точек пересечения плоскости z=h с данным эллипсоидом не существует.
  2. Если
    , то
    и линия (2) вырождается в точки (0; 0; + c) и (0; 0; - c) (плоскости
    касаются эллипсоида).
  3. Если
, то уравнения (2) можно представить в виде


откуда следует, что плоскость z=h пересекает эллипсоид по эллипсу с полуосями
и
. При уменьшении
значения
и
увеличиваются и достигают своих наибольших значений при
, т. е. в сечении эллипсоида координатной плоскостью Oxy получается самый большой эллипс с полуосями
и
.

Аналогичная картина получается и при пересечении данной поверхности плоскостями, параллельными координатным плоскостям Oxz и Oyz.

Таким образом, рассмотренные сечения позволяют изобразить эллипсоид как замкнутую овальную поверхность (рис. 156). Величины a, b, c называются полуосями эллипсоида. В случае a=b=c эллипсоид является сферой.

2. Однополосный гиперболоид.


Однополосным гиперболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением


(3)

Уравнение (3) называется каноническим уравнением однополосного гиперболоида.

Установим вид поверхности (3). Для этого рассмотрим сечение ее координатными плоскостями Oxy (y=0) и Oyx (x=0). Получаем соответственно уравнения


и

из которых следует, что в сечениях получаются гиперболы.

Теперь рассмотрим сечения данного гиперболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, получающаяся в сечении, определяется уравнениями


или
(4)


из которых следует, что плоскость z=h пересекает гиперболоид по эллипсу с полуосями
и
,

достигающими своих наименьших значений при h=0, т.е. в сечении данного гиперболоида координатной осью Oxy получается самый маленький эллипс с полуосями a*=a и b*=b. При бесконечном возрастании
величины a* и b* возрастают бесконечно.

Таким образом, рассмотренные сечения позволяют изобразить однополосный гиперболоид в виде бесконечной трубки, бесконечно расширяющейся по мере удаления (по обе стороны) от плоскости Oxy.

Величины a, b, c называются полуосями однополосного гиперболоида.

3. Двуполостный гиперболоид.

Двуполостным гиперболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением


(5)

Уравнение (5) называется каноническим уравнением двуполостного гиперболоида.

Установим геометрический вид поверхности (5). Для этого рассмотрим его сечения координатными плоскостями Oxy и Oyz. Получаем соответственно уравнения


и

из которых следует, что в сечениях получаются гиперболы.

Теперь рассмотрим сечения данного гиперболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, полученная в сечении, определяется уравнениями


или
(6)

из которых следует, что при
>c (c>0) плоскость z=h пересекает гиперболоид по эллипсу с полуосями
и
. При увеличении
величины a* и b* тоже увеличиваются.

При
уравнениям (6) удовлетворяют координаты только двух точек: (0;0;+с) и (0;0;-с) (плоскости
касаются данной поверхности).

При
уравнения (6) определяют мнимый эллипс, т.е. точек пересечения плоскости z=h с данным гиперболоидом не существует.

Величина a, b и c называются полуосями двуполостного гиперболоида.

4. Эллиптический параболоид.

Эллиптическим параболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением



(7)

где p>0 и q>0.

Уравнение (7) называется каноническим уравнением эллиптического параболоида.

Рассмотрим сечения данной поверхности координатными плоскостями Oxy и Oyz. Получаем соответственно уравнения


и

из которых следует, что в сечениях получаются параболы, симметричные относительно оси Oz, с вершинами в начале координат.

Теперь рассмотрим сечения данного параболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, получающаяся в сечении, определяется уравнениями


или
(8)

из которых следует, что при
плоскость z=h пересекает эллиптический параболоид по эллипсу с полуосями
и
. При увеличении h величины a и b тоже увеличиваются; при h=0 эллипс вырождается в точку (плоскость z=0 касается данного гиперболоида). При h<0 уравнения (8) определяют мнимый эллипс, т.е. точек пересечения плоскости z=h с данным гиперболоидом нет.

Таким образом, рассмотренные сечения позволяют изобразить эллиптический параболоид в виде бесконечно выпуклой чаши.

Точка (0;0;0) называется вершиной параболоида; числа p и q – его параметрами.

В случае p=q уравнение (8) определяет окружность с центром на оси Oz, т.е. эллиптический параболоид можно рассматривать как поверхность, образованную вращением параболы вокруг её оси (параболоид вращения).

5. Гиперболический параболоид.

Гиперболическим параболоидом называется поверхность, которая в некоторой прямоугольной системе координат, определяется уравнением


(9)


где p>0, q>0.

Уравнение (9) называется каноническим уравнением гиперболического параболоида.

Рассмотрим сечение параболоида плоскостью Oxz (y=0). Получаем уравнение


(10)

из которых следует, что в сечении получается парабола, направленная вверх, симметричная относительно оси Oz, с вершиной в начале координат. В сечениях поверхности плоскостями, параллельными плоскости Oxz (y=h), получаются так же направленные вверх параболы.


рассмотрим сечение данного параболоида плоскостью Oyz (x=0).

Получаем уравнение


из которых следует, что и в этом случае в сечении получается парабола, но теперь направленная вниз, симметричная относительно оси Oz, с вершиной в начале координат. Рассмотрев сечения параболоида плоскостями, параллельными плоскости Oyz (x=h), получим уравнения


из которых следует, что при любом h в сечении получается парабола, направленная вниз, а вершина её лежит на параболе, определённой уравнениями (10).

Рассмотрим сечения параболоида плоскостями z=h, параллельными плоскости Oxy . получим уравнения


или

из которых следует, что при h>0 в сечении получаются гиперболы, пересекающие плоскость Oxy; при h<0 – гиперболы, пересекающие плоскости Oyz; при h=0 – гипербола вырождается в пару пересекающихся прямых


и

точка (0;0;0) называется вершиной параболоида; числа p и q – его параметрами.

6. Конус второго порядка.

Конусом второго порядка называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением



(11)

Рассмотрим геометрические свойства конуса. В сечение этой поверхности плоскостью Oxy (y=0) получаем линию


распадающуюся на две пересекающиеся прямые


и

Аналогично, в сечении конуса плоскостью Oyz (x=0) также получаются две пересекающиеся прямые


и

Рассмотрим сечения поверхности плоскостями z=h, параллельными плоскости Oxy. Получим


или

из которых следует, что при h>0 и h<0 в сечениях получаются эллипсы с полуосями
. При увеличении абсолютной величины h полуоси a* и b* также увеличиваются.

При h=0 линия пересечения поверхности с плоскостью z=h вырождается в точку (0;0;0).

Cписок использованной литературы:

1.Шипачёв В.С.:”Высшая математика”

Рефераты. Реферат: Поверхности второго порядка
Рекомендуем


Рефераты. Реферат: Поверхности второго порядка